
Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

Swords: A Simple, Extensible, and Flexible Wallet-

Based Password Manager File Format

Raden Rifqi Rahman - 13520166

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

radenrifqirahman@gmail.com

Abstract— Password manager is a software or program that

stores our password securely by deriving our actual password

using a master key. One kind of password manager is wallet-

based password manager. Wallet-based password manager stores

our secret inside a wallet file. Swords is a flexible and extensible

file format for wallet-based password managers. Swords highly

utilizes map or key-value pairs data structure. Swords stores a

password or secret inside a record. Swords structures records

into directory-like structure with the existence of collections. In

consequence to swords’ simplicity, flexibility, and extensibility; a

password manager can extend swords format to provide more

context or use minimal key-value pairs to save a lot of space.

Keywords— swords, password manager, file format

I. INTRODUCTION

A password is the main protection of anyone’s account on
any services or products. Because of this specific use case,
there is an issue when bad people, namely attackers or hackers,
try to hack one’s password to gain access to their account on a
specific service or product. Although a lot of improvements
have been made since the first scheme of password-based
protection was used, e.g., the salting of password [1], there are
still some problems with password-based security.

The most common problem of using password to secure
one’s account is not the security of the password itself or any
kind of problem involving the software standpoint of the
security. Instead, the problem lies within the human standpoint.
As a human, we are limited to so much memory to remember
everything, including passwords. Hence, two vulnerabilities
arise when using a password for security, namely password
reuse and weak password.

Password reuse is a situation where we use the same
password for more than one account on various services. As
stated, this is the case due to our nature of memory limitation.
Oftentimes, we do not want to remember so much of a thing—
passwords or string of characters—just to be authenticated or
signed in to an account. As consequences, we tend to reuse the
same password for multiple accounts on multiple services.

By the same reason, on the other hand, the vulnerability of
weak password arises because passwords that are considered
“strong” are often very hard to remember. For example, we
might consider that a strong password would contain at least 12
characters which consists of at least one uppercase letter, one

lowercase letter, one numeric character, and one symbol.
Despite being strong, these requirements for a password result
in a password that is not easy to remember. In other words,
such a password is just a random string of meaningless
characters. In consequences, we tend to use meaningful,
relatable, and easy-to-remember words and numbers that are
put together to be a password.

In existence of these two vulnerabilities, a software or
program called password manager is developed to manage our
password so that they do not need to remember any of their
passwords. Such software, combined with a password
generator, a program which generates random strong
password, addresses most of the issues we discussed earlier.
The password generator helps us generate a strong password,
thus solving the weak password vulnerability, and at the same
time also helps us to not reuse the same password repeatedly.
On the other hand, the password manager helps us to store
those various generated strong passwords, therefore disregards
our human memory limitation.

While it sounds so simple, a password manager does not
just plainly store our password in a file or a database to be
retrieved in the future. A password manager secures our
password by some transformations using a master key. Upon
retrieval, the master key is then used to derive the actual
password we store inside the password manager. Hence, we
only need to remember one single password, the master key, to
access all our password in the password manager.

Although the performed password derivation by the
password manager is specific to itself and seems arbitrary,
there is one similarity among any password manager.
Regardless of how it operates to secure our password,
password manager must store the secured password in one way
or another. The most common way to do so is to store the
secured password in a database, e.g., a key-value store, or a
file. When stored in a file, a password manager must also store
some metadata as general information which signifies the file
as that specific password manager’s file. Therefore, the file
must have a specific format, whether an existing format such as
JavaScript Object Notation (JSON) and Extensible Markup
Language (XML), or a custom one. This piqued our interest to
develop a file format which is specifically used for a password
manager, along with an example password derivation scheme,
with the goal of being a simple, extensible, and portable file
format which we called Swords.

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

II. TERMINOLOGY

A. Password Manager

Password manager is a software or program that stores our
password securely by deriving our actual password using a
master key. There are many schemes or variants of password
manager classified by how they derive or store the password.
Reference [2] explains that there are two main kinds of
password managers based on how they operate, namely wallet-
based password managers and hashing password managers.
Wallet-based password managers work by storing our
password in a “wallet” secured by a master key, while hashing
password manager work by computing hash value derived by
our password for an account on a site and the site domain [3].
Since we are developing a file format and password derivation
scheme for a password manager, we refer to password manager
as wallet-based password manager to be specific.

B. Master Key

A master key is the one key or password supplied to the
password manager to derive the actual password. Master key is
also often called master password, or the password-manager
password. We refer to a master key as the key or password to
access the stored password in our password manager file
format.

C. Hash Function

Hash function is a function which receives a sequence of
bytes as an input and returns the hash value or digest as a fixed
length of bytes. We refer to hash function as any cryptographic
hash function of any variations of properties, including block
size, digest size, etc.

D. Encryption

Encryption is the process of transforming a meaningful
piece of information into meaningless sequence of bytes using
an encryption key. We refer to the act of encrypting and
decrypting respectively as transforming the information into
and retrieving the information back from a sequence of bytes.

There are two kinds of encryption in the field of
cryptography, namely symmetric and asymmetric encryption.
Symmetric encryption is an encryption where we use the same
key to encrypt and decrypt an information, whereas
asymmetric encryption is an encryption where we use a
different key to encrypt and decrypt an information. To be
specific, we refer to encryption and related terminologies as
symmetric encryption since we do not use asymmetric
encryption in our implementation.

E. Salt

Salt is a random sequence of bytes, preferably to be
cryptographically secure, that is appended to a given sequence
of bytes before it is hashed. Salt provides randomness property
of the hash value of a given sequence of bytes. It is often used
to secure password in form of hash value so that the digest of
two identical value will be different.

F. File Format

File format is the content format inside a file—how the
contents of the file, including metadata, main data, separators,
and possibly magic number, are arranged in the form of bytes
sequence. File format is also often referred to as file structure.
A specific file format usually has its own file extensions, i.e.,
the suffix in the file name written after the last period
character. We refer to file format as the format of the content
inside the file as well as the file extension. Thus, we may use
the word file format in the place of file extension.

G. Magic Number

We refer to magic number as a sequence of bytes that
uniquely determine a file format. The magic number is usually
placed at the start or at a specific position of a file having such
file format. Some common file formats, such as PNG, JPEG,
and PDF, have their own magic numbers which uniquely
determine their respective file format.

H. Record

We refer to a record as a key-value store that is specific to
context, which we shall see later referred to as label. In other
words, a record is a map, that maps the key, which in this case
is a string of characters to its respective value, which is a
sequence of bytes. However, there are two kinds of value: plain
value and secret value. Plain value is a value that is stored
plainly, i.e., without transformations, in the password manager
file. Secret value is a value that is securely stored in the
password manager file using a similar password derivation
scheme. To be specific, we refer to value as a plain value we
defined earlier. In accordance, we will refer to secret value as a
secret value.

I. Collection

A collection is a group of specific or similar things, either
ordered or unordered. We refer to collection as a list of not
necessarily ordered records. Additionally, a collection also
stores some metadata in the form of a map similar to a record.
A collection may also have children, i.e., collections inside
such collections. Although it contradicts the definition of
collection, we shall later see that our structure of collection
provides a great feature in our password manager file format.

J. Map

Map is a data structure which maps a key of specific type to
a value of specific type. In our design, we mostly refer to a map
as a record-like map—a map that maps a string of characters to
a defined value, either plain or secret.

III. DESIGN AND METHODS

A. General File Structure and File Extension

To achieve a simple file format, we structure our file into
three components. A Swords file starts with a magic number,
followed by key-value entries header, and a collection which
represents the root collection. Hence, our design of password
manager file format always has at least one collection of
records which is the root collection.

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

At the start of the file, we choose the sequence of the
following sequence of bytes, written in base-16, as swords
magic number.

73 77 6F 72 64 73 77 64

The choice of such bytes is not arbitrary. The sequence of bytes
represents the string of ASCII characters “swordswd”.
Therefore, it suggests the idea of having our file format by
looking at the ASCII representation of the first 8 characters in
the file. The specific length of 8 characters is also not chosen
arbitrarily. We chose 8 characters, having exactly the length of
8 bytes, so that it aligns nicely with various integer types. Thus,
we can easily compare the first 8 bytes of a given file with our
magic number as either 64-bit number, two 32-bit numbers,
four 16-bit numbers, and so on.

The string “swordswd” also suggests the file extension of
our file format. We chose the extensions “.swd” or “.swds” for
our file format. The file extensions are chosen since it
abbreviates our file format name, swords, and they are not
well-known and much-used file formats.

After the magic number, we have the header of the file. The
header is a map consisting of metadata of the file. Since it is a
map, we may store as many entries as possible, depending on
how they are used by the underlying password manager. We
keep the entries flexible thus allowing a lot of possible
extensions by the underlying password manager. However, we
restrict the header to containing some preserved keys as we
shall see in the later sections.

Following the header, we put a collection as the root
collection of the file. Similar to its children, the root collection
behaves the same as any other collection. The only limitation
in our file structure is that no more than one collection can be a
root collection thus it will disregard any remaining bytes after
the first collection byte sequence ended. Therefore, swords file
structure would look like the following.

<Magic Number>
<Header>
<Collection>

B. Entities and Starter Bytes

Before breaking down the header and collection structure,
we introduce the concept of entities and starter bytes. To
simplify all items contained in swords file, we generalize any
item as entity. An entity is an item represented in an arbitrary
length sequence of bytes which behaves uniquely based on
their kind. This includes collections, records, and values. To
uniquely determine the kind of entity, we put a unique starter
byte at the beginning of its sequence of bytes. Simply put, an
entity will have a structure as follows.

<Starter Byte>
<Byte Sequence>

C. Header Structure

Similar to a record, the header of swords file is a map of
key to value. However, in contrast to a record, the header has
its own restrictions on what keys it must at least contain. In our

underlying password manager implementation, we require the
header to at least contain the following information.

• Version, with key “v” and value of length 4 bytes.

• Master key hash function name, with key “mkhf” and
value of arbitrary length.

• Key hash function name, with key “khf” and value of
arbitrary length.

• Key cipher name, with key “kc” and value of arbitrary
length.

• Master key hash, with key “mkh” and value of arbitrary
length.

• Master key salt, with key “mks” and value of arbitrary
length.

• Key salt, with key “ks” and value of arbitrary length.

Note that these information in the header is specific to
password manager’s password derivation scheme.
Consequently, this restriction may not be applicable to other
password managers. However, we encourage the underlying
password manager to have at least an information of the
version. We also suggest the key to be “v” as well to save some
space as it is well understood that the letter “v” often stands for
“version.” While it should be clear that version must be a
number, we did not standardize how it should be interpreted.
Our underlying password manager may interpret the version as
a single 32-bit number, whereas another password manager
may interpret the version as two 16-bit numbers, or even
having semantic versioning format with major, minor, and
patch parts. In addition, we keep the meaning of version
flexible. Our password manager recognizes version as the
version of the file format, while another password manager
may consider the version as the software or password
derivation scheme version.

By having the general idea of how to interpret the header,
we can now define the structure of the header. Since one of our
goals is to make the file format simple, we structure every
piece of information in the byte sequence portion of header
entity as a key-value pair. To simplify things even further, we
consider the key in key-value pair as also a value, i.e., it has the
same structure as value which we will define later. This design
is chosen due to the property of both key and value to have an
arbitrary length by default. Therefore, the key in a map is
essentially a special value with some restrictions. Such
restrictions are as follows.

• Only plain value can be a key. Secret value cannot be a
key.

• Key must be able to be decoded into a string in a chosen
encoding, e.g., UTF-8.

All things considered, swords header structure looks like
the following.

<”v”> <Value>
<”mkhf”> <Value>
<”khf”> <Value>
<”kc”> <Value>

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

<”mkh”> <Value>
<”mks”> <Value>
<”ks”> <Value>
<Key> <Value>
...
<Key> <Value>

D. Collection Structure

As stated, our form of collection consists of child
collections, records, and metadata. It is highly analogous to a
directory in a file system. As explained, we keep things flexible
by using key-value map for nearly any information stored in
the file. Accordingly, we use the same form of map to store
metadata in a collection. Like the header, there are also some
restrictions to the metadata map within a collection. However,
we only require the collection to have a label with the key
“label” and value of arbitrary length to name the collection to
avoid confusing one with another.

Looking back at the header structure, we see that it may
have an arbitrary number of key-value pairs with arbitrary
length. Nonetheless, we also observe that the header does not
store any kind of length information. That being the case, up
until this point, we may assume that Values, as well as Keys,
are aware of their own length thus allows the header to not
store any length information. Furthermore, we determine that
records are also aware of their own length. Using this
flexibility, we can arrange the components of collection:
children, records, and metadata, in an arbitrary manner. As an
example, we may have a collection which is structured as the
following.

<Record 1>
<”label”> <Value>
<Record 2>
<Child 1>
<Record 3>
<”some-data”> <Value>
<Child 2>
<Child 3>
<Record 4>

It is technically possible to have such structure of a
collection. Nevertheless, we encounter a problem when we are
to determine whether the entry “label” is part of “Record 1” or
not. Another problem occurs when we encounter reach
“Record 3” and “Record 4.” Since collection also has an
arbitrary length, it is not clear whether “Record 3” should be
part of “Child 1” or the current collection, as well as whether
“Record 4” should be part of “Child 3” or the current
collection.

Recall that the collection is a form of entity which has a
starter byte. In addition to the starter byte, we also add a
terminator byte, specifically for collection, to avoid confusing
record placement. As for the confusion of metadata that could
belong to a record, we enforce metadata of a collection to be
placed before any entities inside the collection—children and
records. As a result, it is still possible to have mixed up and
unordered placement of records and children within a
collection. Nonetheless, the metadata will always be placed at
the beginning of the collection up until the first entity is

encountered. Having said that, our underlying password
manager tries to keep the structure clean by placing child
collections before any records. Moreover, the child collections
and records are also placed in an ordered manner.

As for starter byte and terminator byte, we chose 03 and 04
respectively to represent the starter byte and the terminator byte
of collection. Note that we cannot use the same byte as the
starter and terminator byte because doing so will result in
confusion whether we are encountering a child collection or
terminating current collection when we came across the byte.
In consequence, swords collections have the following
structure.

03
<”label”> <Value>
<Key> <Value>
...
<Key> <Value>
<Child Collection>
...
<Child Collection >
<Record>
...
<Record>
04

E. Record Structure

Like header, swords record consists of key-value pairs.
Since one record is intended to be used to store a single secret,
e.g., a password of an account of a service; we require records
to have a secret value of arbitrary length with the key “secret”.
As well as collection, we also require records to have a label
with the key “label” to avoid confusion. Lastly, we define 02 as
the starter byte of a record. In summary, a record would have
the following structure.

02
<”label”> <Value>
<”secret”> <Secret Value>
<Key> <Value>
...
<Key> <Value>

Previously, we determined that records are aware of their
own length. Still, it does not store any length information.
Simply put, a record will contain all of the following key-value
pairs up until a starter byte that is not the value starter byte
encountered. In this sense, a record will contain as many key-
value pairs as possible, thus is aware of its end—the byte
before non-value starter byte.

F. Value Structure

Since value is aware of its own length and it cannot infer its
end from a starter byte (a starter byte may be contained in a
value), we need to store the length information of the value. In
order to save space, we only use 2 bytes for length information
thereby capping values at a maximum length of 65535 bytes.
This choice is made because 1 byte of length information is too
small since it would only allow values to have a maximum
length of 255 bytes, while a hash function may output a digest
with a length of 256 bytes, 512 bytes, or even more. Likewise,

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

3 or more bytes for the length information is too much. It is
very impractical to have a single data or information to have a
length of more than 65535 bytes. Therefore, 3 or more bytes
for the length information would waste so much space if we
store a lot of secrets or values inside swords file.

Recall that there are two kinds of value in swords file: plain
value and secret value. To distinguish between two kinds, we
could use a byte indicating whether the value is plain or secret.
However, doing so would waste a lot of space as well. On the
contrary, we have only reserved 3 bytes as starter (and
terminator) bytes. In consequence, we can use different starter
bytes for plain value and secret value. We chose 00 as plain
value starter byte and 01 as secret value starter byte. As a
result, a plain value is structured as follows.

00
<Length>
<Byte Sequence>

Likewise, a secret value is structured as follows.

01
<Length>
<Byte Sequence>

As an example, below is the sequence of bytes representing
plain value of the string “hello”.

00 00 05 68 65 6c 6c 6f

G. Authentication

Our implementation of password manager utilizing swords
authenticate user using a master key. By storing master key
hash function name, master key salt, and master key hash, we
verify a given master key by converting the master key to byte
sequence. Subsequently, the byte sequence is appended with
master key salt, then hashed using the master key hash function
resulting in a hash value. If the hash value is identical with
stored master key hash, then the given master key is correct
and user is authenticated.

The authentication using combinations of hash function,
salt, and hash value is enough to verify the owner of the swords
file. Nonetheless, we may observe that for the hash function,
we stored the hash function name and not the function itself.
That being so, in our implementation, we make a hash function
registry which stores a map of hash function name to the
function itself.

H. Secret Derivation

After the given master key is verified, we are finally able to
derive all stored secrets from the master key. In our
implementation, the swords header also stores key hash
function name, key cipher name, and key salt. Instead of
deriving the secrets, what we actually do is derive the key that
is used to encrypt and decrypt the secret. As well as hash
function, we make a cipher registry which stores map of cipher
name to the encryption and decryption function.

To retrieve a secret, we retrieve the desired encrypted secret
which is the value stored in “secret” key of a record.
Afterwards, we derive the encryption key by appending master

key byte sequence with key salt then hashing the result with the
key hash function. With the encrypted secret and encryption
key ready, we retrieve the decryption function from cipher
registry then decrypt the encrypted secret using derived
encryption key.

IV. RESULTS AND DISCUSSION

A. File Size

Since we try to be simplistic and reserve space regarding
swords file structure, we conduct a test on how big swords files
are with various sizes of content stored inside. We pick four
different cases of content size: nothing, no nested collection,
one level nested collections, deeply nested collections. In
addition to the content, we use the hash function SHA-256 for
both master key verification and key derivation and AES256-
GCM cipher for secret encryption and decryption for all four
cases. Table I shows the contents and file size of each case.

TABLE I. SWORDS FILE SIZE

Case Records Collections Nested Collections

Depth

File Size

1 0 1 1 181 bytes

2 5 1 1 571 bytes

3 13 4 2 1228 bytes

4 21 7 4 1852 bytes

We observe that using SHA-256 and master key and key
hash function and AES256-GCM as key cipher results in about
162 bytes of swords header size. Furthermore, by analyzing the
results displayed on Table I, a record with a label about 6-8
characters long is about 80 bytes in size. Note that these 80
bytes include the extra information of “nonce” required to
encrypt and decrypt data using AES256-GCM. Overall, it is
evident that swords require only a tiny amount of space to store
our password securely. As a comparison, with a storage space
of 1 MB, swords is able to store about 12500 records. That is
highly likely to be significantly more than we ever needed.
Moreover, we could also store some binary data or information
as a value in a record to provide more context. As an example,
we may want to attach an icon or image representing the
service that we store the password in the record for.

B. Password Derivation

Using the secret derivation scheme we explained earlier, we
conduct a test to ensure that stored secrets are encrypted and
decrypted correctly. For test purposes, we store a secret string
“swordsswd” into a swords file secured with “swordsswd” as
master key. Our implementation then generates random key
salt with a length of 16 bytes and stores them in the header with
key “ks” as we discussed earlier. By inspecting the swords file,
we obtained the following byte sequence as key salt.

8B D9 43 C4 51 3F 36 54
9B 85 E1 5B F8 B9 5D E8

Upon creating a new record to store the secret, our
implementation also handles the 12-bytes nonce generation for
the secret. We obtained the following 12-bytes nonce.

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

EB CF 1B 9F 8B D5 23 71 ED 01 D7 4B

Along with the nonce, we obtained encrypted secret as
follows.

3C 2E E8 CD 2C 29 DE 51 2D A4 9E 8A 8B 40 89 45 AC
51 9D E8 99 A2 F9 11 2E

To test the key derivation and decryption, we authenticate
ourselves using the master key “swordsswd”. After our
password manager verified our master key, we head towards
the test record inside the swords file. To avoid leaks, our
implementation copied the decrypted stored secret into OS
clipboard. By looking at the contents of our clipboard, our
implementation correctly derived encryption key and decrypted
stored secret back into “swordsswd”.

V. CONCLUSION

Password manager is a software or program that stores our
password securely by deriving our actual password using a
master key. There are two main kinds of password managers
based on how they work, wallet-based password managers and
hashing password managers. Wallet-based password managers
store secured password inside a wallet file to be retrieved when
needed. Hashing password managers hashes the master key
with external context or information to obtain the password.

Swords is a file format used for wallet-based password
managers. Swords highly utilizes map or key-value pairs data
structure to provide high flexibility and simplicity. Swords file
consists of several entities: collections, records, and values.
There are almost no restrictions on how a password manager
interprets the key-value pairs inside a record in a swords file,
thus providing high extensibility.

 An example password manager which utilizes swords file
format to store secrets is implemented using minimal keys
stored in a record. It only needs the required keys, label and
secret, and an extra key, nonce, in a record to be functional. It

utilizes swords header to stores needed metadata for password
derivation. It derives the stored password by appending salt
bytes into master key, then hashes the resulting byte sequence
into an encryption key. Using this encryption key and chosen
cipher in the header, it decrypts encrypted password back to its
original value.

ACKNOWLEDGMENT

First and foremost, I would like to praise and thank God,
the Almighty, who has granted me countless blessing,
knowledge, and opportunity to finish this paper. I would also
like to express my gratitude to the lecturer of IF4020
Cryptography, Ir. Rinaldi Munir, who encouraged me to write
this paper in the first place. Last but not least, I would also like
to thank my family who supported me throughout my life.

REFERENCES

[1] R. J. T. Morris and K. Thompson, “Password Security: A Case History,”
Commun. of the ACM, vol. 22, no. 11, pp. 594-597, Nov. 1979, doi:
10.1145/359168.359172.

[2] E. Stobert and R. L. Biddle, “A Password Manager that Doesn’t
Remember Passwords,” in Proc. 2014 New Secur. Paradigm Workshop,
2014, pp. 39-52, doi: 10.1145/2683467.2683471.

[3] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger
Password Authentication Using Browser Extensions,” in Conf. 14th
USENIX Secur. Symp., 2005. [Online]. Available:
https://www.usenix.org/legacy/publications/library/proceedings/sec05/te
ch/full_papers/ross/ross.pdf

https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/ross/ross.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/ross/ross.pdf

